Variability and trends in total and vertically resolved stratospheric ozone based on the CATO ozone data set

نویسندگان

  • D. Brunner
  • J. Staehelin
  • J. A. Maeder
چکیده

Trends in ozone columns and vertical distributions were calculated for the period 1979–2004 based on the ozone data set CATO (Candidoz Assimilated Three-dimensional Ozone) using a multiple linear regression model. CATO has been reconstructed from TOMS, GOME and SBUV total column ozone observations in an equivalent latitude and potential temperature framework and offers a pole to pole coverage of the stratosphere on 15 potential temperature levels. The regression model includes explanatory variables describing the influence of the quasi-biennial oscillation (QBO), volcanic eruptions, the solar cycle, the Brewer-Dobson circulation, Arctic ozone depletion, and the increase in stratospheric chlorine. The effects of displacements of the polar vortex and jet streams due to planetary waves, which may significantly affect trends at a given geographical latitude, are eliminated in the equivalent latitude framework. The QBO shows a strong signal throughout most of the lower stratosphere with peak amplitudes in the tropics of the order of 10–20% (peak to valley). The eruption of Pinatubo led to annual mean ozone reductions of 15–25% between the tropopause and 23 km in northern mid-latitudes and to similar percentage changes in the southern hemisphere but concentrated at altitudes below 17 km. Stratospheric ozone is elevated over a broad latitude range by up to 5% during solar maximum compared to solar minimum, the largest increase being observed around 30 km. This is at a lower altitude than reported previously, and no negative signal is found in the tropical lower stratosphere. The Brewer-Dobson circulation shows a dominant contribution to interannual variability at both high and low latitudes and accounts for some of the ozone increase seen in the northern hemisphere since the mid-1990s. Arctic ozone depletion significantly affects the high northern latitudes between January and March and exCorrespondence to: D. Brunner ([email protected]) tends its influence to the mid-latitudes during later months. The vertical distribution of the ozone trend shows distinct negative trends at about 18 km in the lower stratosphere with largest declines over the poles, and above 35 km in the upper stratosphere. A narrow band of large negative trends extends into the tropical lower stratosphere. Assuming that the observed negative trend before 1995 continued to 2004 cannot explain the ozone changes since 1996. A model accounting for recent changes in equivalent effective stratospheric chlorine, aerosols and Eliassen-Palm flux, on the other hand, closely tracks ozone changes since 1995.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of three vertically resolved ozone data sets: climatology, trends and radiative forcings

Climate models that do not simulate changes in stratospheric ozone concentrations require the prescription of ozone fields to accurately calculate UV fluxes and stratospheric heating rates. In this study, three different global ozone time series that are available for this purpose are compared: the data set of Randel and Wu (2007) (RW07), Cionni et al. (2011) (SPARC), and Bodeker et al. (2013) ...

متن کامل

Vertical distribution of ozone trends

Variability and trends in total and vertically resolved stratospheric ozone D. Brunner, J. Staehelin, J. A. Maeder, I. Wohltmann, and G. E. Bodeker Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland Alfred Wegner Institute, Potsdam, Germany National Institute of Water and Atmospheric Research (NIWA), New Zealand now at: Empa – Materials Science and Technology, Dübendorf, Swi...

متن کامل

Reconstruction of Data Gaps in Total-Ozone Records with a New Wavelet Technique

This study introduces a new technique to fill and reconstruct daily observational of Total Ozone records containing void data for some days based on the wavelet theory as a linear time-frequency transformation, which has been considered in various fields of science, especially in the earth and space physics and observational data processing related to the Earth and space sciences. The initial c...

متن کامل

Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station

The trends and variability of ozone are assessed over a northern mid-latitude station, Haute-Provence Observatory (OHP: 43.93 N, 5.71 E), using total column ozone observations from the Dobson and Système d’Analyse par Observation Zénithale spectrometers, and stratospheric ozone profile measurements from light detection and ranging (lidar), ozonesondes, Stratospheric Aerosol and Gas Experiment (...

متن کامل

The surface impacts of Arctic stratospheric ozone anomalies

In the Arctic stratosphere, total column ozone in the spring can vary, from year to year, by as much as 30%. This large interannual variability, however, is absent from many presentgeneration climate models, in which the prescribed seasonal cycle of stratospheric ozone includes, at best, smooth multi-decadal trends. We here investigate the extent to which interannual variability in Arctic strat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006